爱看小说

Chapter 3 Characterizing black holes(第1页)

天才一秒记住【爱看小说】地址:https://www.antiquessd.com

Chapter3Charagblackholes

banner"

>

InChapter1,weiheasssingularity,fravitationalcollapse,andsurroundedbyahorizon.ExamplesofsuchobjectsthatarenotspinningarecalledSchwarzschildblackholesandthistermspecifiotesblackholesthataren:inthejargon,theyhavenospin.Simplyput,theonlycharacteristicthatdistinguishesoneSchwarzschildblaaherthanlo)ishowmassiveitis.InChapter7wewilllearnhowblackholesgrowbutfornow,itwillsuffioseuyisthekeyihereisanyrotatiohepre-atter,hehecollapseoccurstherotationratewillinlesssomethingactstostopthathappening).ThisarisesduetoaremarkablephysiownastheservationofangularmomentuThislawisillustratedbyapirouettingskater:asshepullsherarmsinshespihesameway,ifthestarthatgivesrisetotheblackholeisgentlyrotatiheblackholethatitultimatelyformswillbespinningsignifidistermedaKerrblaoststarsareinfag,becausetheythemselvesarefravitationalcollapseofslmassivegasclouds.(Ifsuchagascloudhadeveofiohegcloudwillhavenularmomentum,aeroinglysmallervolumethefinalrotationofthecollapsedobjectmayid.)Thusweseethatrotation,moreonlycalledspiobeaprevalent,ifnotactuallyaubiquitous,characteristicforblackholesthathavejustformedfromtheatter.Wespinisasiableirophysicalblackholesasitisi-daypolitics(thoughiercaseitarisesfromsomethiheservationofangularmomentum!).

Wehaveasedphysicalparameter,thatularmomentum,isacharacteristicthatdistinguishesoneblaaasmassdoes.Thus,therearetwopropertiesofblackholesthatareimportanttokeepinmihebehaviourofblaassandspin.Inprihirdcharacteristicofblackholesthatmightberelevanttotheirbehaviour:electricalcharge.Thisisalsoaservedquantityinphysidtheforcesbetweericowicforces,haveanumberofresemblaogravitationalforce.Akeysimilarityisthatbothare(escales)examplesofinverse-squarelawsmeaningthat,iwomassiveobjects,asyoudoublethedistaseparatesthemfromohegravitatioheyexperieoaquarterinalvalue.Akeydifferewhilegravityisalwaysattractive,electrostaticchargesareoractive(whewobodiesareoppositelycharged,i.e.oiveaherisheyareatothertimesrepulsive(whenthebodieshaveesighpative,theyrepeleachother).Iftwedbodieshavethesametypee,theicrepulsioopreventthemg,evenifgravityistendingtoattracttheSowhilechargeprihirdpropertyofblackholesthatohopetomeasure,iyachargedblackholewouldberapidlyhesurroundiistherefoodoperationalassumptionthatthereareopropertiesofblackholesthatdistinguishonefromanother:massandspin.That'sall!

Now,youmightwoherblackholescouldbedistiheirighthavebeenformedfrasaheliumgascloud.Whyshoulditbethattheproveheatterthatgaverisetotheblackholeisn'tmahemeasurablepropertiesoftheblackholesubseque'sbeation'tgetoutoftheeventhhtisthemeansbywhiightbetrawehavealreadyseeniitotesihorizonofablackhole.Thusthechemipositiohatfellintotheblackholeoeffethepropertiesoftheblackholeasdetermiheoutside.Itwouldtothinkofgravityassomethiogetoutof'theblackhole.Theuedexistenceofagravitatioernaltotheblaethingthatislaiddowionoftheblackholeasspacetimebeesdistorted.Noinflueniheblackholegetheexterertheeventhorizonhasformed.

Blackholeshavenohair

Wheodesotherperson,adistinguishingcharacteristicthatisofteheirhair(forexample,strawberryblreyorchocolatebrown).Therearesometimesthenatureofpeople'shairasteortheirnationality.InformationaboutfurtherphysicalcharacteristicssuassIndex'mightprovideinformatio.Intrasttohumans,blackholesareehaveabsolutelynodistinguishingcharacteristicsotherthantheirmassandtheirspiihereasonsnotedabove).ThisiscapturediphraseBlackholeshavenohair',edbyJohoemphasizethatthereisnothingaboutablackholethatbearsahesprogenitorstar.Notitsshape,notitslumpislasmagitschemiposition.Nothing.Calsdoneby,amoheBelarusianphysicistYakovZel'dovistratedthatifaarysurfacecollapsedtoformablackhole,itseventhorizonwouldultimatelysettledowntoasmoothequilibriumshapehavingnolumpsorbumpsofanykind.So,ablaeverhasabadhairday!Theonlythingsyouowaboutitareitsmassandspin.

Spiy

&hemostremarkablefeatureofaspinningblackholeisthatthegravitationalfieldpullsobjedtheblackhole'saxisofrotatioowardsitstre.Thiseffectiscalledframedragging.AparticledroppedradiallyontoaKerrblackholewilla-radial(i.e.rotating)posofmotionasitfallsfreelyintheblackhole'sgravitationalfield.

Whatthismeansforatestpartigspin(suchasasmallgyroscope)isthatifitfallsfreelytmassivebody,suchasaKerrblackhole,itwillacquireagetoitsspinaxis.Itisasthoughitslocalframeofreferencewasdraggedbytherotatioralmassivebody.Thisphenomenon,dis1918,calledtheLehirriuallyootjustaroundblackholes,buttosomeextentaroundanyspi.Ifyouputaveryprecisegyrosorbitarouheframedraggihegyroscopetoprecess.

ItisEinstein'sfieldequatiohemathematicsofblackholesand,asalsomentionedinChapter1,KarlSchwarzschildsolvedtheseequationsforthecaseofthestationary(n)blaarkableatgivehisin1915,thesameyearthatEiroducedhisgeheoryofrelativity.ThecaseofthespinningblackholewastreatedmuchlaterbyNewZealanderRoyKerrin1965.Afewyearsafterthis,theAustralianBrandonCarterexploredKerr'ssolutioill.CartercarriedoutahiionintothecesoftheKerrmetric.Heestablishedthataspinningblackholecausesadramatigvortexiimethatsurroundsitwhicharisesbecauseofthereferenceframe.Anexampleofavortexisawhirlwihetreofthewhirlwindtheairsidly,gwithitanythinginitspath,beithayinahayfieldorsa.Furtherfromthewhirlwindtheair(andhencehayorsand)rotatesmuchmoreslowly.Soitistoo,withspacetimesurroundingaspinningblackhole:farawayfromtheeventhorizowhichspacetimeitselfrotatesisslow,butatthehorizoselfspinswiththesamespeedthatthehorizonspins.

&horizonforthespinning(Kerr)blauchthesameasforanon-spinning(Schwarzschild)blackhole,exceptthatthefastertheblackholeisspihegravitatioialwell:aKerrblasadeepergravitatioialwellthanaSchwarzschildblaemass,andthereforeaKerrblackholebeamysouranon-spitowhichwereturnihemeaishelpfultosummarizethisbehaviourbysayihorizonofaSchwarzschildblackholedependsonlyonmass,butthatofaKerrblackholedependsonbothmassandspin.

Anoutstaioherecouldbe,eveninprinyspagularitiesthatarenotehinandhiddehorizons-aso-akedsingularity'.Bydefinition,allblackholesolutioeiiohorizonsand,asshoter1,nolightandthereforenoinformationeswithinsus.Allblackholesingularitiesarebelievedtobeehihorizonsanaked',sothatdireationaboutthesingularityisinaccessiblefromtherestoftheUheso-isorshipjecturewasformulatedbytheBritishmathematiRogerPeesthatallspagularitiesfularinitialsarehiddehorizonsandthattherearenonakedsiinspace.

Howmuistoomuch?

Thereisalimittohowmugularmomentumablackholehave.Thislimitdependsonthemassoftheblackhole,sothatamoremassiveblackholefasterthanalessmassiveblackhole.AblackholethatisrotatihismaximumlimitisknowremeKerrblackhole.ItispossibletoshowthatifyoutrytospinupablaakearemeKerrblackhole,byfiringrapidlyrotati(i.e.givingitastir)therifugalfortthematterfromeveheeventhorizon.

&heroutfromtheeventhorizblackholeisannifitmathematicalsurfacewhiowiclimit.Thedraggiialframesmeansthatifthespinofthemassivebodyisherearenostationaryobserversihissurface:everyphysicallyrealizablereferehestaticlimitmustrotate.Withinthissurface,spaningsofastthatlightitselfhastorotatewiththeblackhole,i.e.itisimpossibletoremaiheregioatidtheeventhorizonisknownastheergosphere,whichratherglyisnotspherical,asshowninFigure10.Iorialdirestheergosphereismuchlargerthahorizon,butinthepolardirestheradiusosphereisthesameastheradiusoftheeventhorizshapeosphereisanoblatesphertheshapeofaJarrahdalepumpkin(withoutthestalk).Thefirsttwosyllablesosphere,however,theGreekntowork&#y'(asinergonomiwhichtheolduheerg,isalsoderived.Itisintriguiinadditireekverbergowhistoendkeepariatelyfortheheergosphere.PerhapsthismayhavebeeninthemindserPenroseariosChristodoulouwhodedthehisregionaroundaspinningblackhole.Theimportaheergosphereisthatitistheregionwithinwhiergybeextractedawayfromtheblackhole.

10.ThedifferentsurfadaSchwarzschild(stationary)bladaroundaKerr(spinning)blackhole(ilyusedrepresentationofBoyer-Lindquist'ates).

&heergospherespaning,partiatteracealsogetsweptupintoarotationalmotioatiyisthereforestoredinthisrotationofspace,averyimportantpointtowhichwereturninChapter8.

Whiteholesandwormholes

&eiioivityareparticularlyridallowmaialternativeversionsofcurvedspacetime.Thisprovidesanalmostiiblesourceofpossibleuniversesfiststodesdthinkabout.Whichtypeofuuallyliveinisamatterthatlybedecidedbyobservation(ifatall!).Butthatdoesn'tstopmathematicalphysicistsplayingaroueiionstofindallkindssolutions.

&riguibedreamtupbymathematicalphysicistsiswhatiscalledawhitehole.Awhiteholebehavesjustlikeablackholebutwiththedireereversed(imagineamovieplayedbackwards).Iterbeiisspewedout.Iheeventhionfromwhistakesionintowhigcouldevereerexitsfromawhitehole,iteverreturirefutureisoutside.AsweseeinChapter6,ablackholeisformedfromagstarauallyevaporatebythelawsofquantummetoHawkingradiatioer5).Awhitehole,oherhand,lyresultfromradiationthatforsomereasonspontaneouslyassemblesintoablackhole.ItisouandhowthiscouldhappeninpradmlasEardleyhasdemowhiteholesareiable.

&einandhisstudentNathanRaroueiioheyfouingsolutiioimecouldbestromightbepossibleforittobeesuffitlyfoldedthattacetimereviouslybeeedbyalargedistaneectedbyasmallbridge,orwormhole,asshowniheenormousdistaarsandgalaxieshavealwaysbeenunfavourableforthoseishtosethumandramasonaidwormholes(alsokein-Res)haveprovidedtheperfegdeviceforwriterstotransporttheirheroesandvillainsabout.Thismathematitionhasbeenaothewritersofs,becauseitprovidesareadymeansfenormousdistahroughspadtherebytosustainvarioushighlyartifidunbelievableplotdevices.Yetagain,wehaveiowormholesactuallyexistinourUniverse.Inaddition,thereissiderabletheoreticethatawormhole,oned,wouldablef.Itseemsthattokeepawormholeproppedopen,oneneedsalargeamouiveeer,andallnormalmatterhaspositiveehisisectedwiththefactthatgravityisnormallyalwaysattraatterpassingthroughawormholemaybeenoughtodestabilizea,gittoturnintoablackholesingularity.

11.Awormholegtwootherwiseseparateregioime.

Ifwormholesdidexist,andaintainedforanyreasoime,theywouldhavesaies.Notonlywouldtheyprovideameansfanenormousshortcutacrossavastexpanseofspace,buttheywouldalsoallowatravellertojourneybatime.Oherue-likecurves,loopsiimeinwhichthelightaring(seeFigure12)sothat,likeinthemDay,apersaloime-likeplyrepeattheirsameexperiencesoverandain.

Infact,thereareanumberofsolutioeiionsinadditiontowormholeswhichhavethisalarmingaiveproperty.In1949,themathematiKurtG?elfoundasolutionthatdescribedaspinninguhissexactlythesamesortofe-likecurveswhichpassthrougheventsagainandagaininanendlessGroundhogDaycycle.(Evidentlyfreewill'isnotpartofthefieldequatiooftheKerrsolutionthoughttohavegenuinephysiifitherealworldisthatwhichdescribesthespacetimeoutsideoftheeventhorizoisuhepartoftheKerrsolutioheeventhorizoid,hasanyphysicalrelevahispartoftheKerrsolution,thesingularityisnotapoint(asitisforthenblackhole)buthastheformofarapidlyr(however,thephysicalvalidityisveryspeculative).Thisring-likesingularityissurroundedbye-likesuchacurve,yourfutureisalsoinyourpastandyouhavethetheoreticalpossibilityonerasbeforetheyhadproducedyourparents!Thustheexistene-likecurvesseemstocreatethepossibilityofallkindsofparadtotimetravel.Onepossiblesolutiontothisistoadmitthatwedoheorythatlinksquantummeics(whichdescribestheverysmall)aivity(whichdescribestheverymassive),inotherwordsatheoryofquantumgravity.Wedon'tknowthephysielymassivebutverysmallobjects.MostphysikweofullyuhebehaviourofspacetimeveryclosetosihusitmaybethatthesestraioeiionsdonotactuallyotheUheyareprohibitedbyitsfualquantummeature.Quasmay,forexample,destabilizewormholes.StephenHawkiobethedhascalledthispriheologyProtejecture'.HehasquippedthatthisistheunderlyingprikeepstheUniversesafeforhistorians.

12.Ae-likeloop,onwhichyourfuturebeesyourpast.

Thereismuchabouttheinteriblackholesthatpushesoffualphysiitsaowheremuchofourdesishighlyspeculative.Bytrast,therotationofblackholesaontheirsurroundingsissomethingthathasenormouspractiifiderstandingwhatweseewithourtelescopes.Thusourosiderihappenstomatterwhenitfallsintoablackhole.

本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

如遇章节错误,请点击报错(无需登陆)

新书推荐

直上青云医道官途九份婚书:我的师父绝色倾城权力巅峰:从城建办主任开始极品对手升迁之路官路红途官狱官路扶摇永恒之门官场:扶摇直上九万里官途:权力巅峰官道征途:从跟老婆离婚开始官途,搭上女领导之后!千里宦途步步升云绝品风流狂医官梯险情为夫体弱多病误入官路当明星从跑龙套开始